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Cientı́fico Milenio FORECOS, 4 Piso Facultad

de Ciencias Forestales, Universidad Austral de

Chile, Casilla 567, Valdivia, Chile

*Correspondence: Christine Meynard, Núcleo
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ABSTRACT

Aim To test statistical models used to predict species distributions under

different shapes of occurrence–environment relationship. We addressed three

questions: (1) Is there a statistical technique that has a consistently higher

predictive ability than others for all kinds of relationships? (2) How does species

prevalence influence the relative performance of models? (3) When an automated

stepwise selection procedure is used, does it improve predictive modelling, and

are the relevant variables being selected?

Location We used environmental data from a real landscape, the state of

California, and simulated species distributions within this landscape.

Methods Eighteen artificial species were generated, which varied in their

occurrence response to the environmental gradients considered (random, linear,

Gaussian, threshold or mixed), in the interaction of those factors (no interaction

vs. multiplicative), and on their prevalence (50% vs. 5%). The landscape was then

randomly sampled with a large (n ¼ 2000) or small (n ¼ 150) sample size, and

the predictive ability of each statistical approach was assessed by comparing the

true and predicted distributions using five different indexes of performance (area

under the receiver-operator characteristic curve, Kappa, correlation between true

and predictive probability of occurrence, sensitivity and specificity). We

compared generalized additive models (GAM) with and without flexible

degrees of freedom, logistic regressions (general linear models, GLM) with and

without variable selection, classification trees, and the genetic algorithm for rule-

set production (GARP).

Results Species with threshold and mixed responses, additive environmental

effects, and high prevalence generated better predictions than did other species

for all statistical models. In general, GAM outperforms all other strategies,

although differences with GLM are usually not significant. The two variable-

selection strategies presented here did not discriminate successfully between truly

causal factors and correlated environmental variables.

Main conclusions Based on our analyses, we recommend the use of GAM or

GLM over classification trees or GARP, and the specification of any suspected

interaction terms between predictors. An expert-based variable selection

procedure was preferable to the automated procedures used here. Finally, for

low-prevalence species, variability in model performance is both very high and

sample-dependent. This suggests that distribution models for species with low

prevalence can be improved through targeted sampling.
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INTRODUCTION

In past decades, ecologists have used a variety of statistical

techniques to predict species occurrences over broad geo-

graphical areas. In general, these models employ correlations

between point-location data on species occurrences, and

environmental predictors from GIS or other mapped data.

These models have wide management applications in the

context of conservation biology, biogeography and climate

change studies (Guisan & Zimmermann, 2000; Guisan &

Thuiller, 2005; Araújo & Rahbek, 2006). Despite the large

amount of work on this topic, we typically lack knowledge

about the mechanisms that drive species distributions (Gaston,

2003; Holt, 2003).

When modelling species distributions, predictors can be

classified into three main categories (Guisan & Zimmermann,

2000): resource variables, which represent consumed matter or

energy; direct gradients, which represent variables that have

some physiological influence on organisms; and indirect gradi-

ents, which do not have a direct relationship to the species

physiology but have a strong correlation to other direct or

resource gradients and are easily measured. Dr Mike Austin has

argued that using predictors that have a direct relationship to

species responses is important to link theory and statistical

modelling, and may also increase a model’s predictive power

(Austin et al., 2006; Austin, 2007). For example, species

abundances along an environmental gradient are predicted to

be symmetrical or skewed bell-shaped responses under different

theoretical frameworks (Austin, 2002, 2007). However, species

distributions are often modelled using presence–absence data

rather than abundance, because this information is easier to

gather from museum collections and rapid field surveys

(Latimer et al., 2006). A further complication comes from

translating theoretical predictions based on abundance

responses (Austin et al., 2006; Austin, 2007) into patterns of

species presences and absences (He & Gaston, 2003; Hui et al.,

2006), especially if occurrence and abundance patterns respond

by different mechanisms to the same environmental controls

(Potts & Elith, 2006).

Numerous studies have compared the performance of

statistical techniques to predict species distributions, resulting

in a variety of recommendations regarding model use (Ferrier

et al., 2002; Segurado & Araújo, 2004; Elith et al., 2006).

Comparing models with real data poses several problems

beyond the lack of knowledge on the empirical distributions

discussed above. Interpreting data collected in the real world is

often confounded by problems of differing species detectability

(Boulinier et al., 1998; Royle, 2004; Buckland et al., 2005);

differences in species prevalence (Segurado & Araújo, 2004);

variability among observers and habitat types (Buckland et al.,

2005; Royle et al., 2005); biased sampling intensity due to

limited access of certain areas (Austin & Heyligers, 1989;

Wessels et al., 1998); effects of factors not considered in the

modelling process (Guisan & Zimmermann, 2000; Austin,

2002); or effects of individuals actively aggregating in space

(Keitt et al., 2002; Lichstein et al., 2002). Species with low

prevalence impose a particular challenge due to the usually

limited number of occurrence observations available, and the

lower performance of most models when faced with small

sample sizes (Bourg et al., 2005; Nielsen et al., 2005). Estima-

ting the empirical performance of models to determine

whether certain models perform better in some situations

and not others requires (usually unattainable) knowledge of all

of these issues.

In contrast, generating artificial data on species distribu-

tions provides the advantage of giving us perfect knowledge

and control over the causal factors of interest (Hirzel et al.,

2001; Austin et al., 2006). Previous simulation studies have

generated artificial data on environmental gradients as well

as abundance distributions for several species along a

gradient, where the position of a species is constrained by

others in the environmental space (Austin et al., 2006 and

references therein). Other studies have used one species type

with a particular combination of occurrence–environment

relationships to compare performance of different modelling

strategies (Austin et al., 1995; Hirzel et al., 2001), while

others focused on the effects of spatial autocorrelation and

sampling design on model fit (Hirzel & Guisan, 2002; Reese

et al., 2005). In general, these simulations assumed additive

effects between environmental gradients, suggesting that

these predictors were mutually substitutable. However, in

the real world, many species may present non-substitutable

responses to a particular environmental gradient (Prasad

et al., 2006; Termansen et al., 2006).

In this study we generated 18 artificial species, which

differed in their response shapes (random, linear, Gaussian,

threshold and mixed) to three environmental gradients, in

the way these environmental variables interacted in deter-

mining species occurrences (additive vs. multiplicative), and

in their prevalence (50% vs. 5%). To our knowledge, this is

the first simulation study to address the effects of differing

occurrence–environment relationships on model perform-

ance. We generated probabilities of occurrence, rather than

abundance responses, using different spatially explicit, rule-

based mechanisms on three direct environmental variables.

Given the large number of modelling strategies available

(e.g. Elith et al., 2006), we restricted ourselves to comparing

four commonly used methods (Guisan & Thuiller, 2005;

Latimer et al., 2006). We contrasted the simulated and

modelled distributions, focusing on three questions: (1) Is

there a statistical technique that has a consistently higher

predictive ability than others for all kinds of occurrence–

environment relationship? (2) How does species frequency

of occurrence influence each model’s relative performance?

(3) When an automated stepwise selection procedure is

used, does it improve predictive modelling, and are the

relevant variables being selected?

MATERIALS AND METHODS

We started our modelling process by generating 18 artificial

species that differed in their occurrence responses to three
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environmental gradients: mean temperature, oxygen partial

pressure, and net primary productivity (Fig. 1). Nine species

were generated with a prevalence of 50%, and a second set of

nine species were generated with a prevalence of 5%. We then

simulated a statistical modelling process for those species

occurrences using direct, indirect and unrelated variables

(Table 1). By doing this, we assumed lack of knowledge

about the relevant variables and their relationship to the

species-occurrence patterns. In what follows, we explain the

details of each step.

Simulation of species presences/absences

In total, we used 10 environmental variables for the state of

California (Table 1). Three were used to generate the artificial

species, and nine were used in the statistical model building

process (Table 1). All the layers were clipped to a California

coverage, and converted to a geographical projection raster

with a resolution of 30 degree seconds (c. 1 km resolution).

All necessary layers were then sampled, and each sample was

exported into the r statistical package ver. 2.1.0. (R

Development Core Team, 2005) for the statistical modelling.

The rest of the geographical data processing was done using

ArcGIS ver. 9.0.

We used data from three empirical environmental variables

to generate rule-based species distributions: annual mean

temperature (mtemp), oxygen partial pressure (pO2) and

estimated net primary productivity (NPP). These three envi-

ronmental factors have been widely described as having a

direct effect on the ecophysiology and habitat selection of

many vertebrate species (Prosser & Brown, 1961; McNab,

1980; Spicer & Gaston, 1999). Surrogate variables such as

altitude are often indirectly related to species distributions

through causal mechanisms that involve their relationship to

physiological constraints (thermoregulation and oxygen con-

sumption at higher elevation) and productivity (food and

water availability, quantity and quality of resources) (Guisan &

Zimmermann, 2000). Altitude could, of course, have been used

instead as a distribution-generating variable, and would

undoubtedly have led to qualitatively similar results. We chose

oxygen partial pressure as having a direct mechanistic meaning

to large mobile animals that motivate this study, while altitude

was used in the statistical model fitting as an indirect variable

that is strongly correlated to the real causal gradients (see

Guisan & Zimmermann, 2000 for a discussion of elevation as a

Figure 1 General modelling process. (a) We started by generating

a map of probability of occurrence of an artificial species with

known environment–occurrence relationships. (b) The probability

of occurrence was translated into a presence and absence map. (c)

We then sampled the landscape in 2000 or 150 random points,

where we registered the nine environmental variables used in the

statistical modelling building, as well as presences and absences

and true probabilities of occurrence. This sampling was repeated

50 times, yielding 50 iterations per species. (d) From this sample,

80% of the points were used to create the statistical models and (e)

the other 20% to test the model performance; (f) we could then

compare the predictions of the models with the real probability of

occurrence and presence/absence patterns.

Table 1 Identity of environmental gradients used in the model-

ling process.

Variable Type Modelling Source

Annual mean temperature Direct Yes Worldclim*

Oxygen partial pressure Direct No Worldclim�
Net primary productivity Direct Yes Modis�
Altitude Indirect Yes Worldclim*

Annual temperature range Indirect Yes Worldclim*

Annual precipitation Unrelated Yes Worldclim*

Precipitation seasonality Unrelated Yes Worldclim*

Temperature seasonality Indirect Yes Worldclim*

Normalized difference

vegetation index

Indirect Yes Modis�

Presence of forest Unrelated Yes GAP Analysis§

‘Type’ refers to whether the variable was used to generate the artificial

species (direct), was highly correlated with direct variables (indirect),

or was unrelated to direct variables (unrelated). ‘Modelling’ indicates

whether or not the variable was used as a predictor when building the

statistical models.

*Climatic variables for California, downloaded from Worldclim (Hij-

mans et al., 2004):http://www.worldclim.org.

�Generated from altitude using a standard atmosphere model (West,

1996).

�Available at http://modis.gsfc.nasa.gov, described by Running et al.

(2004).

§Land cover extracted from the California GAP Analysis and converted

to a forest/non-forest layer.
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surrogate variable). Similarly, we used an estimate of primary

productivity generated from the normalized difference vegeta-

tion index (NDVI), rather than NDVI itself.

For each virtual species, the probability of occurrence, Pocc,

was calculated as:

Pocc ¼ f ðmtemp, pO2;NPPÞ þ e ð1Þ

where f (mtemp, pO2, NPP) represents a function of three

environmental factors (annual mean temperature, oxygen

partial pressure and net primary productivity, respectively),

and e represents a normally distributed random error. We

generated two kinds of species with respect to the relationship

between the three environmental variables considered. In the

first species type, which we call additive species, the probability

of occurrence was calculated as the sum of the independent

probabilities of occurrence given each one of the environmen-

tal factors, a method comparable with that used by Hirzel et al.

(2001). This additive species mimics a case in which the three

environmental factors considered are substitutable and inde-

pendent. In other words, if conditions regarding one factor are

poor, this could be compensated by the other two factors being

favourable:

Pocc ¼ f1ðmtempÞ þ f2ðpO2Þ þ f3ðNPPÞ þ e ð2Þ

The second kind of species, which we call multiplicative

species, show a multiplicative effect between the three envi-

ronmental variables considered:

Pocc ¼ f1ðmtempÞ � f2ðpO2Þ � f3ðNPPÞ þ e ð3Þ

We can think about this model species as one in which there

is interaction between environmental factors. Here the three

environmental variables are essential and not replaceable for

the species subsistence. If one of the factors is very unfavour-

able at a site, the species will have a low probability of

occurrence even though the other two factors may be near the

species optimum. This may be a more realistic assumption for

many species and their limiting resources, since it is likely that

many environmental factors interact in determining species-

occurrence patterns (Prasad et al., 2006).

The functions f1, f2 and f3 determine a suitability score for

each environmental variable, and represent the particular

shape of the occurrence–environment relationship for each

environmental layer. To make sure each factor had the same

weight in the artificial species occurrence, each function was

rescaled to have the same range of values, and the final

probability of occurrence was rescaled between 0 and 1 by

using a linear transformation between the unconstrained and

constrained values. We preferred this transformation to a logit,

for two reasons. First, a linear transformation will preserve the

shape of the relationships between occurrence and the

environmental gradient originally created. Second, the gener-

alized models that we tested later use a logit-link function to

constrain probability values (see below), and we wanted to

avoid biasing our analysis by creating species that behaved in

an ideal way for a subset of the models tested.

More complex variations on both additive and multipli-

cative species are readily constructed, and it might be

reasonable to do so for particular taxa where there are

sound mechanistic reasons to infer particular environmental

controls on species distributions (Tilman, 1980). Here we

limit ourselves to simple models, which may be viewed as

limiting cases, to study how multiple causal factors with and

without interactions affect the performance of our statistical

estimation procedures. However, statistical models are

likely to behave in a similar fashion, given a different set

of direct and indirect predictors combined in a similar way.

Therefore we see no reason to think our findings are

specific either to the California landscape or to a particular

taxon.

Shape of the occurrence–environment relationship

The species responses to the environmental factors considered

(f1, f2 and f3 in equations 2 and 3) were allowed to take one of

three shapes: Gaussian, linear or threshold. A Gaussian species

responded to the particular environmental factor considered

by having a symmetrical and decreasing probability of

occurrence around an optimum value, while a linear response

was characterized by a steady increase or decrease in the

probability of occurrence. A threshold response was charac-

terized by a simple ‘all-or-nothing’ response to a threshold in

the environmental gradient.

In pure species, the shape of f1, f2 and f3 was the same for all

three factors. In addition, we created a mixed species, which

had a Gaussian response to mean temperature (f1), a threshold

response to oxygen partial pressure (f2), and a linear relation-

ship to NPP (f3) (Table 2). We also generated a species that

had a random distribution with respect to the environment.

However, this species resulted in a model performance that

was not significantly different from a random prediction for all

statistical models compared, and is therefore excluded from

any further discussion.

The combination of different shapes of the occurrence–

environment relationships and the additive/multiplicative

species results in eight different types of simulated species,

here called additive-linear, additive-Gaussian, additive-thresh-

old, additive-mixed, multiplicative-linear, multiplicative-

Gaussian, multiplicative-threshold and multiplicative-mixed.

Generating species presences and absences

First, California was divided into a regular grid populated with

random numbers drawn from a uniform distribution. If the

random number in a particular cell was smaller than the

probability of occurrence for that cell, the species was

considered present. For example, if the probability of occur-

rence in a particular cell is equal to 0.8, and the range of the

uniform random number is 0–1, 80% of the time the random

number will be < 0.8. The desired species prevalence can be

adjusted by modifying the range of the probabilities of

occurrence generated.
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We started by modelling each type of species with a

prevalence of 0.5. We tested the statistical approaches by

sampling 2000 random locations across California and gener-

ating predictions of probabilities of occurrence and presence

and absence that we could then compare with their true values.

We then generated the same species types with a prevalence of

0.05. In this case, we tested the statistical models using a large

sample size (2000 random samples), and a small sample size

(150 random samples). An example is shown in Fig. 2.

Statistical models to be compared

Six statistical models were used and compared to predict

species distributions: logistic regression (general linear models,

GLM), generalized additive models (GAM), classification trees,

the genetic algorithm for rule-set production (GARP), logistic

regression with a stepwise variable selection (sGLM), and

generalized additive models with a flexible smooth term and

flexible degrees of freedom (sGAM). Table 3 summarizes the

basic differences between these statistical modelling strategies,

and more detailed descriptions can be found elsewhere

(McCullagh & Nelder, 1989; Hastie & Tibshirani, 1990;

Stockwell, 1999; Venables & Ripley, 2002). In all analyses,

each predictor was included both untransformed and squared

in order to consider quadratic relationships between predictors

and species probability of occurrence. The one exception was

the forest layer, and all variables for the GAM analysis. No

interaction terms between variables were included.

We ran the GLM with a logit-link function and binomial

distribution to model presence/absence data with all nine

predictors included in the modelling process. For sGLM, a

variable selection based on Akaike’s information criterion

(Burnham & Anderson, 2002) was used to reduce the number

of predictors further. To implement GAM, we also assumed a

binomial distribution and logit link with nine predictors. The

mgcv library within the statistical package r was used to create

the GAM models, with 4 d.f. on all variables except the forest

layer, which was modelled as a linear relationship. A second

model strategy, described by Wood (2004), involves allowing

for some flexibility in the degrees of freedom of GAM for each

variable included in the model. In this approach, which we call

sGAM, the algorithm runs several iterations in which it

chooses the lower level of complexity for each variable that

optimizes model fitting by minimizing the unbiased risk

estimator (UBRE), a criterion similar to AIC (Venables &

Ripley, 2002; Wood, 2004). It also reduces the importance of

irrelevant variables by changing its effective degrees of

freedom. Classification trees were implemented with the

Table 3 Summary of basic assumptions in each statistical modelling strategy.

Model Assumptions

GLM Additive and linear relationship between predictors

Logit relationship between predictors and response (probability of occurrence)

No variable selection

sGLM Same as GLM, but with variable selection – models with lower AIC values are selected in a stepwise procedure

GAM Additive relationship between predictors, smooth (nonlinear) terms are allowed with 4 d.f. for continuous variables

Logit relationship between sum of predictors and response (probability of occurrence)

sGAM Same as GAM, but with variation in complexity of smooth terms – models with a lower UBRE value (similar to AIC)

will be preferred, irrelevant variables will have little importance in the model (Wood & Augustin, 2002)

Classification

trees

No assumption on shape of relationships between predictors

Predicts a hierarchical threshold response

No variable selection, but more important variables will appear higher in the hierarchy of the tree

GARP Combination of all previous strategies (and assumptions) according to model performance: envelope rules

(similar to classification trees), logit rules (similar to GLM and GAM), negation rules

GLM, logistic regression (general linear models); sGLM, logistic regression with a stepwise variable selection; GAM, generalized additive models;

sGAM, generalized additive models with a flexible smooth term and flexible degrees of freedom; GARP, genetic algorithm for rule-set production.

Table 2 Different types of artificial species generated.

Feature Type

Shape of environment–

occurrence relationships

Linear

Gaussian

Threshold

Interaction between

factors

No interactions: environmental

gradients are independent – these

are ‘additive species’

Multiplicative effects between

environmental gradients

Combination of

relationships

None, all environmental gradients

have the same type of relationship

– these are ‘pure species’

Mixed: the occurrence–environment

relationship is linear for net primary

productivity, Gaussian for mean

annual temperature and threshold

for oxygen partial pressure

Species prevalence 50%, high-prevalence species

5%, low-prevalence species

Eight species types were generated with respect to occurrence–

environment relationships: additive-linear, additive-Gaussian,

additive-threshold, additive-mixed, multiplicative-linear, multipli-

cative-Gaussian, multiplicative-threshold, multiplicative-mixed. The

same species types were generated with two levels of prevalence. Two

additional species were randomly distributed across the landscape,

with low and high prevalence.

Comparison of species-distribution models
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function rpart in the r statistical package (Venables & Ripley,

2002). This function grows the trees by partitioning the data

into sequentially homogenous groups, as described by Breiman

et al. (1984). Then a pruning method based on minimizing a

cost–complexity measure is applied to reduce the number of

leaves in the tree to an optimal size to minimize overfitting

(Breiman et al., 1984; Venables & Ripley, 2002). Finally, GARP

is a computer-intensive method that can use a variety of

techniques and combinations of variables to find the best

empirical predictions. Here we used desktop garp ver. 1.1.6.

(Stockwell, 1999), although there is now a newer version

available through OpenModeller (Elith et al., 2006). Each

run results in a presence-and-absence map, and the probability

of occurrence is calculated by averaging all the rasters of

presences and absences generated for each case. Due to

computer and timing constraints, we ran GARP using the

default options of choosing one rule type at a time, and

20 runs per case.

Assessment of model performance

For each artificial species generated, we took 50 equally sized

random samples of the landscape. For each sample, we

generated a statistical model of species distribution using

80% of the data (training set). Each statistical model resulted

in a prediction of probability of occurrence which was used

in the evaluation of the model. We used the other 20% of

the data to test the model (testing set), mimicking a data-

splitting strategy often used to evaluate distribution models

applied to real species (Fig. 1). As both sampling instances

were totally random (e.g. there is no bias in the sampling

process, as there would be in the real world), and represen-

ted a small proportion of a large area (< 0.5% of available

grids), this is equivalent to having two independent data sets

to build the models on one hand, and test them on the

other: within the subsamples there was no spatial auto-

correlation in the environmental gradients used (Moran’s I,

P > 0.05), and there was no temporal autocorrelation

involved as our species distributions are static. However,

this data-splitting approach has some other limitations that

are considered in the Discussion.

Five measures of model performance were used. The area

under the receiver–operator characteristic curve (AUC) pro-

vides several advantages over other performance indices, as it is

less sensitive to species prevalence and it measures overall

model performance (Zweig & Campbell, 1993; Fielding & Bell,

1997; Webb & Ming Ting, 2005). The maximum Kappa value

is used to assess the improvement over chance given by the

predictive model (Fielding & Bell, 1997). We also calculated

the Pearson correlation value between the true and predicted

probability of occurrence. Finally, on occasions it might be

useful to know if the models are predicting the presences or

absences more successfully (Fleishman et al., 2001; Bulluck

et al., 2006). For this reason, we also calculated sensitivity and

specificity for each model. Sensitivity is the proportion of

presences that are predicted by the model and that are in fact

presences, and specificity is the proportion of true absences

(Fielding & Bell, 1997). These were calculated based on the

probability threshold that corresponded to the maximum

value of Kappa (Liu et al., 2005). This method has been used

frequently to predict species presence due to its simplicity,

although methods based on the receiver–operator character-

istic curve and cost–benefit analysis have been recommended

over Kappa-based methods (Liu et al., 2005).

To explore whether different modelling strategies showed

better predictive ability with particular species types, we used a

two-way anova with species type and statistical model as

factors. Tukey’s honestly significant difference (Tukey’s HSD)

test for multiple comparisons (Steel et al., 1997) was used to

look for significant differences between groups.

RESULTS

Large sample size, high species prevalence

A two-way anova shows that both the main effects and the

interaction terms are significant for all measures of perform-

ance (P < 0.05). Among the main effects, an important result

is that GAM, GLM and sGLM do not differ significantly

among themselves in terms of the AUC, Kappa, specificity or

sensitivity. sGAM presents higher performance values with

regard to different indices, but does not differ significantly

from GAM, except for Kappa and the correlation value

(Fig. 3; Table 4).

Classification trees appear to perform particularly well in

predicting species presences, as shown by a higher sensitivity

(Fig. 3). However, classification trees are often poor predictors

of presences and absences combined, as shown by all other

indices of performance. The only exception is for the additive-

threshold case, where classification trees perform significantly

better than any other statistical model. GARP provides

particularly poor predictions of the probability of occurrence,

but otherwise behaves similarly to the classification trees for

other indices of performance (Fig. 3; Table 4). GAM signifi-

cantly outperforms the logistic regression approach (GLM)

only for the additive and multiplicative Gaussian species and

for the multiplicative-mixed species (Tukey’s HSD, P < 0.05).

In all other cases, although GAM performs slightly better than

GLM, this difference is not statistically significant (Tukey’s

HSD, P > 0.05).

Surprisingly, all statistical models show a similar pattern, in

that they tend to perform better for the same set of species. For

each additive species, the presence and absence predictive

ability (AUC and Kappa indices) is higher than for its

multiplicative counterpart (Fig. 4). In other words, all statis-

tical models provide better overall predictions when they are

presented with additive effects rather than multiplicative

effects, especially when the species has a threshold or mixed

response to the environmental gradients. On the contrary,

sensitivity shows higher values for multiplicative species,

suggesting that all models tend to estimate presences better

than absences when the overall predictive performance is low,
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Figure 3 Predictive performance of the different modelling strategies compared when using a sample size of 2000. For simplicity, all

species types are grouped together. A two-way anova with species type and statistical models as factors shows significant differences in the

main effects and their interactions. See Table 4 for statistically significant differences between groups.

Figure 2 Example of a species-distribution simulation. The upper row of graphs represents an additive-mixed species: (a) probability of

occurrence; (b) simulated presence for the species with 50% prevalence; (c) presence with 5% prevalence. The lower row represents a

multiplicative-mixed species: (d) probability of occurrence; (e) simulated presence with 50% prevalence; (f) simulated presence with 5%

prevalence. Dark grey in (a,d) represents areas of higher suitability.
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therefore overestimating species range sizes (Fig. 4). Presences

and absences of species with linear relationships are partic-

ularly poorly modelled (Fig. 4; Table S1 in Supplementary

Material).

Large and small sample size, low species prevalence

When examining species with 5% prevalence and with a large

sample size (2000 samples), results are similar to those for

species with 50% prevalence. As in the previous case, a two-

way anova shows highly significant differences in the main

terms (statistical model and species type) and their interaction

(Table S2). However, we can note a few important differences.

First, all models decreased their performance in every measure

compared with the species with the larger prevalence (Fig. 5).

Second, results of different performance indices became more

variable, and differences between modelling strategies became

less significant. Classification trees are heavily affected by the

lower prevalence, and perform worse than any other model

regardless of the species type or index considered. However,

classification trees typically perform better in terms of

sensitivity than the other models. In other words, when the

species is infrequent, classification trees tend to have good

predictions of the species presence, but very poor predictions

of species absences, systematically overpredicting the species

occupancy range.

Another important difference compared with the high-

prevalence species is that GARP performed in a similar way to

GLM, sGLM, GAM and sGAM in terms of AUC and the

Pearson correlation between true and predicted probability of

occurrence. In fact, it outperforms GAM and sGAM in the

additive-Gaussian, multiplicative-Gaussian and multiplicative-

linear species in terms of AUC and sensitivity (Tukey’s HSD,

P < 0.05). However, when we examine Kappa, specificity and

the correlation with the true probability of occurrence, GLM

and GAM still outperform GARP in all species types.

With a small sample size and species of low prevalence, these

tendencies are only accentuated (Table S3), although the

general trends regarding models’ relative performance are the

same. A species prevalence of 5% on a sample size of 2000 will

generate, on average, 100 presences, while on a sample size of

150 it will generate only 7.5 presences. Model performance on

every index becomes more variable when species prevalence

decreases from 50% to 5%, so much so that all statistical

models generate equally poor predictions that are, on average,

not significantly different from a random prediction

(AUC ¼ 0.5). However, GAM and GARP generate the best

predictions in all species types, with GAM usually outper-

forming GARP in all indexes except the correlation with the

true probability of occurrence in the additive-Gaussian and

multiplicative-Gaussian cases. This suggests that, under such

conditions, the performance of each particular model will be

highly dependent on the sample, some of them resulting in

very good predictions, and some others in very poor predic-

tions. When the expected number of occupied locations is this

low (e.g. < 10), the average behaviour of the models is

unsatisfactory in all cases.

Variable selection

For simplicity, we present here only the results for low-

prevalence species (e.g. prevalence of 5%), although results for

the high-prevalence species are qualitatively similar. The three

variables used to generate mechanistically the distributions of

the artificial species (altitude through pO2, mean temperature

and NPP) are identified by standard statistical methods as

significant empirical predictors of those distributions in fewer

than 50% of the iterations (Fig. 6).

When using sGAM with a large sample size, the three variables

used to build the artificial species are identified as significant

Table 4 Results from a two-way anova with two factors (model

type and species type) were significant (P < 0.001) for AUC,

Kappa, correlation and sensitivity.

Index

Significance of model comparisons

GLM sGLM GAM sGAM Tree GARP

AUC

GLM ns ns ** *** ***

sGLM ns ns *** *** ***

GAM ns ns ‘ *** ***

sGAM ** *** ‘ *** ***

Tree *** *** *** *** ns

GARP *** *** *** *** ns

Kappa

GLM ns ns *** *** ***

sGLM ns ns *** *** **

GAM ns ns ** *** ***

sGAM *** *** ** *** ***

Tree *** *** *** *** ns

GARP *** ** *** *** ns

Correlation

GLM ns *** *** ns ***

SGLM ns *** *** ns ***

GAM *** *** * * ***

sGAM *** *** * *** ***

Tree ns ns * *** ***

GARP *** *** *** *** ***

Sensitivity

GLM ns ns ns *** ***

SGLM ns ns ns *** ***

GAM ns ns ns *** ***

SGAM ns ns ns *** ***

Tree *** *** *** *** ***

GARP *** *** *** *** ***

Tukey’s honestly significant difference (Tukey’s HSD) tests for mul-

tiple comparisons were carried out for all measures of model per-

formance between all models. Significance levels: ns ¼ non-significant;

‘, 0.10 < P < 0.5; *P < 0.5; **P < 0.01; ***P < 0.001.

GLM, logistic regression (general linear models); sGLM, logistic

regression with a stepwise variable selection; GAM, generalized

additive models; sGAM, generalized additive models with a flexible

smooth term and flexible degrees of freedom; Tree, Classification trees;

GARP, genetic algorithm for rule-set production.
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Figure 4 Predictive performance of the different species types for all statistical models used with a sample size of 2000 and species of 50%

prevalence. Significant differences between groups can be seen in Table S3. AL, additive-linear; AG, additive-Gaussian; AT, additive-threshold;

AM, additive-mixed; ML, multiplicative-linear; MG, multiplicative-Gaussian; MT, multiplicative-threshold; MM, multiplicative-mixed.
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Figure 5 Comparison of model performance for common (prevalence ¼ 50%) and rare (prevalence ¼ 5%) species with a large sample size

(n ¼ 2000). Model predictive performance is significantly higher for all indices for the species with higher prevalence (Tukey’s HSD, P < 0.05).
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from 6% to 36% of the time, while other indirect and unrelated

variables were identified as significant in < 10% of the cases.

Multiplicative species result in poor variable selection (Fig. 6),

with only the mixed species showing significance of altitude and

mean temperature in slightly more than 25% of the iterations.

Additive species, especially for threshold and mixed responses,

result in the direct variables used to generate the occurrence

patterns being selected more often, compared with other species

types. When the sample size is small, the success at selecting

relevant variables is even lower, with NDVI and precipitation

being significant more often than the other variables (c. 20% of

the time for most cases), and altitude, mean temperature and

NPP being significant < 10% of the time.

When using sGLM and a large sample size, altitude and

mean temperature are selected as important variables more

often than NPP. With additive species, these three variables are

selected in > 50% of the iterations. However, other variables

such as temperature seasonality and range are also selected in c.

40% of the cases (Fig. 6). The variable selection performs

better for threshold and mixed species, and worse for linear

species. Multiplicative species show a lower performance of the

variable selection procedure as many other variables are

selected as frequently as NPP, and only slightly less frequently

than altitude and mean temperature. When the sample size is

small, all variables, including altitude, mean temperature and

NPP, are selected > 50% of the time. Thus the stepwise

selection procedure shows little discrimination ability between

causal and merely correlated data on candidates for predictor

variables.

DISCUSSION

Our modelling framework examines the applicability of a

number of the most widely used models to species with

intermediate and low prevalence, the distributions of which are

largely set by habitat and the physical environment in a

controlled setting. From the results presented here, we can

draw several recommendations for future use of these statis-

tical techniques to predict species distributions. First, GAM

and GLM performed better overall than classification trees and

GARP. As with other comparative studies (Franklin, 1998;

Elith & Burgman, 2002; Thuiller et al., 2003; Segurado &

Araújo, 2004), these two modelling strategies seem to represent

a good trade-off between model complexity and performance

for a diverse set of species. We found that, despite the

differences in model assumptions, all statistical approaches

seem to provide the best predictions for additive species, in

particular those that respond to a threshold in the environ-

mental gradients or that have a mixed functional response.

Therefore, if there is mechanistic evidence of nonlinear effects

and strong interactions, specifying that the model includes

those variables and interactions should improve the predictive

power of the model. We found the worst predictions when the

species had a linear relationship to the environmental gradient,

in particular in multiplicative species. This could be due to the

structure of the modelling strategies per se. The logit-link

function used in GAM and GLM is a nonlinear function, and

the grouping strategy used in classification trees represents

better a threshold response. GARP, being essentially a com-

bination of the regression (e.g. GLM) and envelope rules,

would also respond better to nonlinear and threshold cases.

We show here that GAM and sGAM perform better overall

than GLM, sGLM, classification trees and GARP, although

these differences are not significant when compared with

GLM. However, in our modelling strategy, both the training

and testing data sets are taken from the same geographical

area (e.g. California). This validation procedure is often used,

but has some drawbacks. Environmental layers in both data
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Figure 6 Variable selection for sGAM and

sGLM with a sample size of 2000. Top panel

shows percentage of iterations in which a

particular variable was selected as significant

(P < 0.05) in sGAM. Bottom panel shows

percentage of iterations in which each variable

was selected by the AIC criterion in sGLM.

mtemp, annual mean temperature; NDVI,

normalized difference vegetation index; NPP,

net primary productivity; pseason, precipi-

tation seasonality; tseason, temperature

seasonality; trange, yearly temperature range;

precip, annual mean precipitation.
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sets have the same structure and relationships, and therefore

these results may not be transferable to a different geograph-

ical region (Araújo et al., 2005; Randin et al., 2006). In other

words, it is possible that when the testing set is taken from an

area with a different environmental structure, the relative

performances of the models changes. Randin et al. (2006), for

example, found that GAM performed better than GLM when

the testing data set was a subset of the data in the same

geographical region as was used to generate the statistical

model. However, when the testing data set was taken from a

different region, simpler models such as GLM tend to

perform better (Randin et al., 2006). This difference could be

due to more flexible models, such as GAM, overfitting the

data. This may not be an issue when the interest in modelling

species distribution comes from characterizing present-day

distributions. Guisan et al. (2006) for example used species-

distribution modelling to identify efficient sampling strategies

for rare species within their potential ranges. This is highly

relevant to generating sound conservation strategies for

endangered species, but it requires using a model strategy

that works best for the region of study, the same one as is

used to generate the initial statistical model. However, when

studying climate change scenarios, more flexible models, such

as GAM, may perform poorly in predicting distribution

shifts, due to their reduced performance under new environ-

mental conditions (Araújo et al., 2005; Araújo & Rahbek,

2006; Randin et al., 2006).

Regarding variable selection, sGAM and sGLM did not

improve predictions with respect to GAM and GLM. sGAM

may provide some improvement over GAM for some indexes

of performance, especially for the most common species, and

would therefore be preferable over sGLM. However, sGAM

and sGLM failed to discriminate mechanistically relevant

variables from correlated environmental factors. This limits the

interpretation of selected variables as biologically significant,

and suggests that an expert-based selection of potentially

relevant variables would be preferable to the variable selection

procedures presented here. Other authors have reached similar

conclusions for several automated stepwise variable selection

methods (Derksen & Keselman, 1992; Maggini et al., 2006;

Segurado et al., 2006). These results are consistent with

previous empirical studies showing that an implementation

of GAM with flexible degrees of freedom, equivalent to sGAM

here, performs similarly to other traditional methods (e.g.

GAM, GLM) in terms of predictive ability, and fails to select

the meaningful model factors into the models (Elith et al.,

2006; Maggini et al., 2006).

In our modelling framework, classification trees perform

poorly and tend to overpredict the area of occupancy,

especially when the species has low prevalence. However, this

technique presents some advantages when the species is

common, and responds to a threshold in the environmental

gradients. Given that some empirical studies have shown a

better performance of classification trees compared with GLM

and GAM in some of the species modelled (Franklin, 1998;

Segurado & Araújo, 2004), it is worth asking whether these

species respond to thresholds in the environmental gradients,

displaying an on–off response rather than continuous varia-

tions, for which GLM and GAM seem more effective. This

could have important consequences in the context of climate

change and habitat fragmentation, as a threshold response

would create abrupt changes in species distributions as

opposed to gradual shrinkages as climate and landscapes

change in an unfavourable manner. Newer tree-based methods

may increase the potential of classification trees. For example,

Maggini et al. (2006) apply classification trees on residuals of a

regression to identify interactions between predictors. This

method takes advantage of the properties of both modelling

strategies, and may outperform any one of them applied

separately (Maggini et al., 2006). Prasad et al. (2006) proposed

to combine different tree-based methods in order to get the

best predictions with newer techniques, but interpret the

results with the more traditional ones.

The fact that all strategies performed poorly when the

species being modelled was uncommon is not surprising, as it

has been shown previously that sample size and number of

presence records greatly influence model performance

(McPherson et al., 2004; Reese et al., 2005; Guisan et al.,

2006). McPherson et al. (2004) showed that this could be an

effect of sample prevalence rather than species prevalence. To

avoid this problem, they suggest weighting absences by the

ratio of number of presences to number of absences. Even by

doing so, the authors show that the variance of performance as

measured by different indices increases when the species is rare

or very common (prevalence < 0.20 or > 0.75). This is

consistent with our findings that different models generate

better predictions (on average and with less variance) with

species of 50% prevalence vs. 5% prevalence.

Some recent studies have shown that desktop garp

performs poorly when compared with simpler and computa-

tionally less intensive methods, and that a newer version

available through OpenModeller (garp 3.0) generates better

results than desktop garp 1.1.6, used here (Elith et al., 2006).

We show here that GARP may actually present some

advantages over GAM when the species is rare and there are

extremely few presence records, a situation that may arise

frequently for endangered species. For species with fewer than

100 presence records (5% prevalence in a sample size of 2000),

variability in model performance in general is very high for all

modelling strategies. In practice, this translates into some

samples generating very poor predictions, while others gener-

ate very good predictions. Strategies such as those exemplified

by Guisan et al. (2006), where predictive modelling is used

iteratively in conjunction with a stratified sampling of

potentially suitable habitat, may be the only way to charac-

terize rare species’ geographical ranges. Increasing sampling

size guided by habitat modelling in an iterative process would

certainly increase model performance (Engler et al., 2004;

Reese et al., 2005; Guisan et al., 2006).

To our knowledge, this is the first study to compare species

with different functional environment–occurrence relation-

ship shapes in a controlled setting. Results appear to be fairly
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consistent across different shapes of the environment–occur-

rence relationship and species prevalence, and the type of

interaction between factors (additive or no interaction vs.

multiplicative), validating previous empirical studies in their

general recommendations (Segurado & Araújo, 2004; Elith

et al., 2006).

There are a few previous studies that use virtual species in a

real landscape to study species-distribution models. Austin

et al. (1995) and Hirzel et al. (2001) modelled artificial species

that are equivalent to the additive species used here, and used

only one species type, with a combination of functional shapes,

to test statistical models. We believe that the multiplicative

species are more realistic in that environmental factors are

likely to interact in determining most species-occupancy

patterns, and modellers tend to ignore these potential inter-

actions. Other studies, reviewed by Austin et al. (2006) and

Austin (2007), used artificial data to generate abundance

responses along environmental gradients. Austin et al. (2006)

generated artificial data both on species abundance and on

environmental gradients. There is obviously a relationship

between species abundance and probability of occurrence

(Brown, 1995; Holt et al., 2002; Gaston et al., 2006). However,

this relationship is not always easy to characterize (Holt, 2003;

Gaston et al., 2006; Hui et al., 2006). While bell-shaped curves

have been widely advocated when studying variations in

species relative abundances along environmental gradients

(Austin, 2007), other types of response, such as environmental

thresholds and linear relationships, have been used more often

when studying species presence–absence patterns (Hirzel et al.,

2001; Guisan & Thuiller, 2005). As argued by Austin et al.

(1995, 2006) and Austin (2007), different statistical models are

often used without clear reference to ecological theory. There is

an urgent need to create a theoretical framework for species

distributions that includes occurrence–abundance relation-

ships. He & Gaston (2003) recently proposed a model that

links species abundance, variance and occupancy patterns (He

& Gaston, 2003), but the model has not been tested (Gaston

et al., 2006). Potts & Elith (2006) compared different

abundance models and found that the hurdle model, which

separates the occurrence pattern from the relative abundance

pattern, performed better than other techniques at recovering

species distributions. This suggests that occurrence and

abundance may respond differently to environmental gradi-

ents, and incorporating both would aid better understanding

of species distributions.

Finally, we suggest that this simulation strategy opens the

door for testing a variety of hypotheses regarding species

distributions. Some of the questions that could be further

studied using this approach relate to the effects of sampling

strategies, population structure, species spatial aggregation

and habitat patchiness, among other practical issues. For

example, we did not consider here the effect of active spatial

aggregation of individuals, a factor that can add significant

complexities to the environment–occurrence patterns (Lich-

stein et al., 2002; Reese et al., 2005; Hoeting et al., 2006).

Previous studies suggest that this kind of spatial autocor-

relation can change significance levels of predictors and

affect variable selection techniques, but do not necessarily

substantially affect predictive ability (Reese et al., 2005). The

artificial species created here did not aggregate actively,

therefore any spatial autocorrelation in their distribution can

be explained by the environmental predictors (Haining,

2003). Other simulation studies have been applied to these

questions (Hirzel & Guisan, 2002; Dark, 2004; Reese et al.,

2005; Wintle & Bardos, 2006) and could guide our empirical

studies in a more systematic fashion. We suggest that

artificial species populating real landscapes could be used

more frequently to guide new sampling efforts in particular

geographical areas, and could become especially relevant in

guiding studies of rare and endangered species.
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